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ABSTRACT: Alzheimer’s disease is characterized by patho-
logical aggregation of protein tau and amyloid-β peptides, both
of which are considered to be toxic to neurons. Naturally
occurring dietary flavonoids have received considerable
attention as alternative candidates for Alzheimer’s therapy
taking into account their antiamyloidogenic, antioxidative, and
anti-inflammatory properties. Experimental evidence supports
the hypothesis that certain flavonoids may protect against
Alzheimer’s disease in part by interfering with the generation
and assembly of amyloid-β peptides into neurotoxic oligomeric
aggregates and also by reducing tau aggregation. Several
mechanisms have been proposed for the ability of flavonoids to
prevent the onset or to slow the progression of the disease.
Some mechanisms include their interaction with important
signaling pathways in the brain like the phosphatidylinositol 3-
kinase/Akt and mitogen-activated protein kinase pathways that
regulate prosurvival transcription factors and gene expression. Other processes include the disruption of amyloid-β aggregation
and alterations in amyloid precursor protein processing through the inhibition of β-secretase and/or activation of α-secretase, and
inhibiting cyclin-dependent kinase-5 and glycogen synthase kinase-3β activation, preventing abnormal tau phosphorylation. The
interaction of flavonoids with different signaling pathways put forward their therapeutic potential to prevent the onset and
progression of Alzheimer’s disease and to promote cognitive performance. Nevertheless, further studies are needed to give
additional insight into the specific mechanisms by which flavonoids exert their potential neuroprotective actions in the brain of
Alzheimer’s disease patients.
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Alzheimer’s disease (AD) is a neurodegenerative disorder
and the most common form of dementia worldwide. The

major histopathological hallmarks of AD include proteinous
aggregates in the form of neurofibrillary tangles (NFTs),
consisting of hyperphosphorylated tau1,2 and extracellular senile
plaques, which are deposits of heterogeneously sized small
peptides of amyloid-β (Aβ) that are formed via sequential
proteolytic cleavages of the amyloid precursor protein (APP) 3

(Figure 1). Dominant mutations in APP, presenilin-1 (PS1) or
PS2 are responsible for the early onset or familial form of AD.
These mutations have been shown to profoundly alter APP
metabolism, favoring the production of aggregation-prone Aβ
species, these findings formed the basis for the “amyloid
cascade hypothesis” of AD pathogenesis. This broadly accepted
hypothesis states that the generation of neurotoxic Aβ peptides
by β-secretase and γ-secretase are at the basis of AD
pathophysiology. Other hallmarks of this disease, like neuro-
transmitter changes4,5 and neuronal and synapse loss in the

neocortex and the hippocampus6,7 develop as a consequence of
this event.

■ AMYLOID PRECURSOR PROTEIN
APP belongs to a protein family that includes APP-like protein
1 and 2 in mammals.8,9 All are single-pass transmembrane
proteins with large extracellular domains, and all are similarly
processed. Though the family shares several other conserved
domains such as the E1 and E2 domains in the extracellular
sequence, the Aβ domain is unique to the APP protein.
Alternative splicing of the APP transcript generates eight
isoforms, of which three are most common: the 695 amino acid
form, which is expressed predominantly in the central nervous
system, and the 751 and 770 amino acid forms, which are more
ubiquitously expressed.10 APP is synthesized in the endoplas-
mic reticulum and then transported through the Golgi
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apparatus to the trans-Golgi-network (TGN) where the highest
concentration of APP is found in neurons at steady state.11,12

From the TGN, APP can be transported in TGN-derived
secretory vesicles to the cell surface where it can be
proteolytically cleaved directly by α-secretase and then γ-
secretase, producing a soluble molecule (sAPPα),13 a process
that does not generate Aβ. Alternatively, it can be reinternalized
in clathrin-coated pits into another endosomal compartment
containing the proteases β-secretase 1 (BACE-1) and γ-
secretase,14,15 resulting in the production of Aβ, which is
then released into the extracellular space following vesicle
recycling or otherwise degraded in lysosomes.

■ BACE-1 SECRETASE AND APP CLEAVAGE

The first step in Aβ generation is APP cleavage by the β-
secretase; BACE-1 is the major β-secretase.16,17 BACE-1 is a
membrane-bound aspartyl protease with a characteristic type I
transmembrane domain near the C-terminus.16 Overexpression
or downregulation of BACE-1 induces or inhibits cleavage of
APP, confirming that BACE-1 is the β-secretase involved in
APP metabolism and its activity is the rate-limiting factor in Aβ
generation.16,18

Several studies have investigated the potential of BACE-1 as
a therapeutic target. BACE-1 knockout mice do not produce
detectable levels of Aβ and have no severe phenotypic
abnormalities.19,20 Suppression of this secretase by RNA
interference reduced APP processing and Aβ production in
primary cortical neurons derived from both wild-type and
Swedish APP mutant transgenic mice.21 Moreover, disruption
of the BACE-1 gene rescued memory deficits and cholinergic

dysfunction in Swedish APP mice.22 Studies have also found
that BACE-1 protein and activity levels are elevated in brain
regions affected by AD23,24 and that oral administration of a
potent and selective BACE-1 inhibitor decreased β-cleavage
and Aβ production in APP transgenic mice in vivo.25

Nevertheless, some studies also show that BACE-1 as a drug
target may not be as safe as first assumed. For example, BACE-
1 KO mice were reported to present hypomyelination of
peripheral nerves and aberrant axonal segregation,26 suggesting
that inhibition of β-secretase may have unwanted serious
collateral effects.

■ TAU PROTEIN AND ALZHEIMER’S DISEASE

Tau is one of the microtubule associated proteins that is
thought to have a role in the stabilization of neuronal
microtubules, providing the tracks for intracellular transport.
In AD, tau protein is not able to keep the cytoskeleton well
organized in the axonal process, since this protein loses its
capacity to bind to microtubules due to conformational changes
and misfoldings,27,28 leading to its aberrant aggregation as
fibrillary structures inside neurons.29 Other tau modifications
related to this dementia include phosphorylation, proteolysis,
and ubiquitination, where abnormal phosphorylation is
considered the most critical modification. Tau aggregation
into paired helical filaments (PHFs) results from its hyper-
phosphorylated state, and culminates in the formation of NFTs
which constitute one of the earliest AD markers (Figure 1).
Moreover, abnormal hyperphosphorylated tau detached from
microtubules also leads to increased intraneuronal soluble tau

Figure 1. β-Amyloid plaques and neurofibrillary tangles are hallmark deposits of Alzheimer’s disease. The major protein component of the plaques is
Aβ that results from APP by proteolytic cleavage. β-Secretase (BACE-1) generates the amino terminus of Aβ, and γ-secretase defines its length. Aβ
forms toxic oligomeric aggregates that then deposit as plaques. In AD, tau is hyperphosphorylated and dissociates from MTs, causing them to
depolymerize. Tau is then deposited in aggregates such as NFTs.
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concentration, due to sequestration of normal tau from
microtubules, further facilitating tau aggregation into PHFs.30

Changes in tau protein, affecting stabilization of micro-
tubules, are likely to impair axonal transport,31,32 leading to
changes in synaptic proteins and mitochondria axonal transport
and ultimately culminating in “dying back” axons.

■ KINASES AND PHOSPHATASES: INVOLVEMENT IN
ALZHEIMER’S DISEASE

In AD pathogenesis, the proteins that bind and interact with
APP are different according to the phosphorylation state of
APP.33,34 Several studies have been performed to clarify the role
of APP phosphorylation at specific residues. Within the APP
molecule, Thr668 is considered the major phosphorylation site,
although other amino acids in the APP cytoplasmic domain are
also phosphorylated.35−37 CDK5 (cyclin-dependent kinase-5)
and GSK-3β (glycogen synthase kinase-3β) are thought to
phosphorylate APP at Thr668 in neurons38−40 and when cells
are subjected to a stress stimulus, c-Jun N-terminal kinase
(JNK) may also phosphorylate APP at Thr668.41,42 Hyper-
phosphorylation of APP in AD patients’ brain may also be
explained by the Aβ inhibition of phosphoprotein phosphatase
1 (PPP1)35 or PPP2, thus contributing to the phosphorylation
of APP at Thr668.43

As already referred, another hallmark in AD is the
hyperphosphorylation of tau protein (Figure 1), and
phosphorylation of tau regulates its binding activity to
microtubules stimulating their assembly. Basal phosphorylation
levels are required for optimal tau function, whereas, as
mentioned previously, in an hyperphosphorylated state tau
loses its biological activity. Around 85 tau phosphorylation
sites, of which 28 are exclusively phosphorylated in AD brains,
have been described.44 In AD, abnormal tau phosphorylation
may be the result of upregulation of tau kinase(s) or
downregulation of tau phosphatase(s), although they may not
be mutually exclusive.45 The kinases that are assumed to play
the most significant role in brain tau phosphorylation are GSK-
3β, CDK5, cAMP-dependent protein kinase (PKA), and
calcium/calmodulin-dependent kinase II (CaMK-II).46

Among these kinases, GSK-3β may play a major role in
regulating tau phosphorylation in both physiological and
pathological conditions. GSK-3β can phosphorylate tau at

several residues and a complementary and PPP1, PPP2A,
PPP2B, and PPP2C are all possible candidates that can
dephosphorylate tau protein.47 In general tau phosphoprotein
is at least three- to 4-fold more hyperphosphorylated in the
brain of AD patients when compared to that of aged
nondemented individuals.48

■ FLAVONOIDS

An increasing body of evidence demonstrates the neuro-
protective potential of flavonoids either by preventing the onset
or by slowing the progression of age-related neurodegenerative
diseases. Dietary supplementation studies using flavonoid-rich
plant or food extracts have shown their ability to influence
cognition and learning in humans and also in animal models of
diseases.49−55 Presently, there is no direct association between
flavonoid consumption and improvement in neurological
health. Nevertheless, the potential beneficial effect of flavonoids
in the brain seems to be related to their ability to interact with
intracellular neuronal and glial signaling pathways, thus
influencing the peripheral and cerebral vascular system,
protecting vulnerable neurons, enhancing existing neuronal
function, or stimulating neuronal regeneration.54

Flavonoids are naturally occurring polyphenolic compounds
widely spread in plants. They are present in foods and
beverages of plant origin such as a variety of fruits, vegetables,
cocoa, cereals, tea and wine.56 The six main subclasses of
flavonoids include the (1) flavonols (e.g., kaempferol,
quercetin), which are present in onions, leeks, and broccoli;
(2) flavones (e.g., apigenin, luteolin), present in parsley and
celery; (3) isoflavones (e.g., daidzein, genistein), which are
mainly found in soy and soy products; (4) flavanones (e.g.,
hesperetin, naringenin), mainly found in citrus fruit and
tomatoes; (5) flavanols (e.g., catechin, epicatechin, epigalloca-
techin, epigallocatechin gallate (EGCG)), which are abundant
in green tea, red wine, and chocolate; and finally (6)
anthocyanidins (e.g., pelargonidin, cyanidin, malvidin), whose
sources include berry fruits and also red wine57 (Figure 2).
It was thought that the ability of flavonoids to promote

memory, learning, and cognitive function was mediated by their
antioxidant capacity.58 Nevertheless, due to their limited
absorption and their low bioavailability in the brain, increasing
evidence demonstrates that they are able to interact with the

Figure 2. Major classes of natural flavonoids and their dietary sources.
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cellular and molecular components of the brain responsible for
memory, having the potential to protect vulnerable neurons,
enhance existing neuronal function, stimulate neuronal
regeneration, and induce neurogenesis.58,59

■ EFFECT OF FLAVONOIDS ON APP PROCESSING

Several flavonoids have been shown to inhibit the development
of AD and to reverse cognitive deficits in rodent models,
indicating their potential therapeutic utility. Since altered APP
processing leading to increased Aβ production is a key
pathogenic feature of AD, several studies have been directed
toward the antiamyloidogenic properties of flavonoids. In this
regard, it was recently demonstrated that anthocyanin-enriched
bilberry and black currant extracts have the ability to modulate
APP processing and alleviate behavioral abnormalities in the
APP/PS1 mouse model of AD.60 In the transgenic PSAPP
mouse model of cerebral amyloidosis, oral administration of
tannic acid for 6 months prevented transgene-associated
behavioral impairment and defective spatial reference memory.
Several other studies further support the efficacy of flavonoids
on memory and learning, as for example, nobiletin, a citrus
flavonoid, which proved to ameliorate Aβ-induced memory
impairment and decrease the Aβ burden and plaques in the
hippocampus of a transgenic mouse model of AD.61 Moreover,
grape derived polyphenols (GSPE) administered orally for 5
months to Tg2576 mice, attenuates cognitive deterioration
coincidently with reduced levels of high-molecular-weight
soluble Aβ oligomers in the brain.62

Another citrus flavonoid, luteolin, was shown to reduce Aβ
peptide generation in both human “Swedish” mutant APP
transgene-bearing neuron-like cells and primary neurons, also
decreasing the amyloidogenic gamma-secretase APP process-
ing.63 Additionally, consumption of polyphenol-rich grape seed

extract or curcumin for 9 months prevented amyloid-beta
deposition in the brain of an AD mouse model.64

At the APP processing level, it was demonstrated that long-
term treatment (16 months) with Ginkgo biloba extract
(EGb761) significantly lowered APP protein levels in a
transgenic mouse model of AD, suggesting that its potential
neuroprotective properties may be, at least partly, related to its
APP lowering effects.65 Also, brain parenchymal and cerebral
vascular β-amyloid deposits were diminished in tannic acid
treated PSAPP mice, suggesting that it acts as a natural β-
secretase inhibitor.66 Natural flavonoids were shown to potently
inhibit BACE-1 activity and reduce the level of secreted Aβ in
primary cortical neurons,67 whereas epigallocatechin-3-gallate
and curcumin suppress amyloid beta-induced BACE-1
upregulation in neuronal cultures.68

Several studies have focused on studying the beneficial
properties of regular intake of green tea. Green tea polyphenol
(−)-epigallocatechin-3-gallate (EGCG) has proved to have a
beneficial role in reducing brain Aβ levels, by modulating
amyloid precursor protein (APP) processing.69,70 ADAM10
activation is necessary for EGCG promotion of nonamyloido-
genic (α-secretase cleavage) APP processing.71 Furthermore,
EGCG-mediated enhancement of nonamyloidogenic process-
ing of APP was found to be mediated by the maturation of
ADAM10, via an estrogen receptor-α/phosphoinositide 3-
kinase/Ak-transforming dependent mechanism. Since estrogen
depletion following menopause has been correlated with an
increased risk of developing AD, selective estrogen receptor
modulation could be a therapeutic target and the use of EGCG
could be considered as an alternative to estrogen therapy in the
prophylaxis and treatment of this disease.72

EGCG may also have a neuroprotective action by possessing
the ability to inhibit the formation of β-sheet-rich amyloid
fibrils. It was demonstrated that it inhibits the fibrillogenesis of

Figure 3. APP processing and flavonoid activity. Flavonoids can reduce Aβ production either by enhancing α-secretase (ADAM10) activity or by
inhibiting β-secretase (BACE-1). Additionally, flavonoids may lead to the production of off-target Aβ oligomers, thereby disrupting fibrillization.
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Aβ by directly binding to the natively unfolded polypeptides
and preventing their conversion into on-pathway aggregation,
intermediates which are toxic to neurons.73 Moreover, EGCG
has the ability to convert large amyloid-beta fibrils into smaller,
amorphous protein aggregates that are nontoxic and therefore
suggesting that EGCG is a potent remodeling agent of mature
amyloid fibrils.74 Besides EGCG, other flavonoids have also
shown antiamyloidogenic properties especially myricetin, that
exerts an antiamyloidogenic effect in vitro by preferentially and
reversibly binding to the amyloid fibril structure of Aβ, rather
than to Aβ monomers.75,76

Overall, these studies suggest that certain flavonoids are able
to disrupt fibrillization by leading to the production of off-target
Aβ oligomers, function as BACE-1 inhibitors or act by
enhancing ADAM10 activity, consequently reducing Aβ
production (Figure 3). However, more studies are needed to
discover which flavonoid structures have the greatest beneficial
potential and their underlying mechanisms of action.

■ TAU AND FLAVONOIDS

Potential beneficial effects of flavonoids in AD may play a role
in downstream targets such as tau phosphorylation. Concerning
this, some studies have elucidated aspects on the effect of
flavonoids in the tau protein, which may impact AD. Myrecetin
and epicatechin-5-gallate have been shown to inhibit heparin-
induced tau formation77 and EGCG administration in
Alzheimer transgenic mice leads to modulated tau profiles,
with suppression of sarkosyl-soluble phosphorylated tau
isoforms.70

Other studies using GSPE have also shown its capability to
inhibit tau neuropathology in a mouse model of AD, inhibiting
tau peptide aggregations, as well as dissociating preformed tau
peptide aggregates and disrupting PHFs.78−81 Interaction of
flavonoids with signaling pathways important for tau
phosphorylation will be further discussed in the next section.

■ FLAVONOIDS AND THEIR INTERACTION WITH
SIGNALING PATHWAYS

There is extensive evidence indicating that certain flavonoids82

and some of their metabolites83−85 are capable of exerting
beneficial effects on neurological processes through their
interaction with neuronal signaling pathways.
Potential flavonoid-binding sites on neurons include the

adenosine,86 GABAA,
87−89 δ-opioid,90,91 nicotinic,92,93 TrkB,94

estrogen,72 and testosterone receptors,95 as well as a specific
brain plasma membrane binding site for polyphenols.96

Flavonoids and their metabolites have been shown to exert
neuronal effects through their interactions with a number of
protein kinase and lipid kinase signaling cascades, such as the
PI3K/Akt, tyrosine kinase, protein kinase C, and MAPK
signaling pathways and the nuclear factor-κB path-
way.58,59,83,97−103 Inhibitory or stimulatory actions at these
pathways are likely to greatly affect neuronal function, by
changing the phosphorylation state of target molecules and/or
by modulating gene expression. Consequently, this can lead to
changes in plasticity, synaptic protein synthesis, and morpho-
logical changes involved in neurodegenerative processes and
memory. Mitogen-activated kinases (MAPKs) belong to the
superfamily of serine/threonine kinases and regulate several
cellular mechanisms by transducing extracellular signals into
intracellular responses.104,105 It has been suggested that
flavonoids and their metabolites may interact selectively with

the MAPK signaling pathways.102,106 The action of flavonoids
on the ERK pathway83,99,107−110 appears to be mediated by
interactions with MAPK kinases MEK1 and MEK2 and
potentially membrane receptors.102,111,112 In fact, flavonoids
have close structural homology to specific pharmacological
modulators of ERK signaling such as PD98059 (2′-amino-3′-
methoxyflavone). Moreover, activation of ERK can result in
downstream activation of cAMP response element binding
protein (CREB), which may lead to changes in synaptic
plasticity and memory113,114 and to upregulation of neuro-
protective pathways. It was demonstrated that memory
performance in rats supplemented with blueberry, which
contains high amounts of flavanols and anthocyanins, correlates
with the activation of CREB and with increases in both pro-
and mature levels of BDNF in the hippocampus,115 both of
which are linked to the control of synaptic plasticity and long-
term memory. Moreover, administration of green tea catechins
for 6 months prevented spatial learning and memory
impairments in senescence-accelerated mouse prone-8 mice
by decreasing Aβ (1−42) oligomers, increasing the activity of
the protein kinase A/cAMP-response element binding protein
(PKA/CREB) pathway, and by upregulating synaptic plasticity-
related proteins in the hippocampus.116

Additionally flavonoids modulate PI3-kinase, via direct
interactions with its ATP binding site.98,117 One of the most
selective PI3-kinase inhibitors available, LY294002, was
modeled on the structure of quercetin.100,118 LY294002 and
quercetin fit into the binding pocket of the enzyme although
with different orientations.119 Substitution of hydroxyl groups
on the flavonoid B ring and the degree of unsaturation of the
C2−C3 bond in the C ring are important determinants of this
particular bioactivity. Regarding this, it appears that different
flavonoids are likely to express different cellular outcomes
depending on their degree of interaction with either receptors
or downstream kinases, meaning that the interactions with
signaling pathways may be structure-dependent. One example
of this is the flavonol quercetin and some of its in vivo
metabolites which were shown to inhibit prosurvival Akt/PKB
signaling pathways by inhibiting PI3-kinase activity,83 whereas
flavanones, such as hesperetin, have been shown to activate
Akt/PKB signaling to confer prosurvival properties in cortical
neurons.108 Furthermore, it has been shown that EGCG
stimulates extracellular signal-regulated kinase (ERK)- and
PI3K-dependent increase in CREB phosphorylation and
upregulates GluR2 levels in cortical neurons and can therefore
act as a modulator in neurotransmission, plasticity, and
synaptogenesis.107

Supplementing the diet of aged animals with blueberry for 12
weeks, has been shown to induce the phosphorylation of
hippocampal Akt, the activation downstream of mTOR, and the
increased expression of activity-regulated cytoskeletal-associ-
ated protein (Arc/Arg3.1).115 Since Arc is known to be
important in LTP and has been proposed to be under
regulatory control of both BDNF,120 such changes may
underlie events related to spatial memory through the
facilitation of alterations in synaptic strength, and the induction
of morphological changes.121 These possibly include alterations
in neuronal spine density and morphology, which are
considered vital for learning and memory.122 Studies indicating
that changes in neuronal morphology can occur in response to
flavonoid supplementation support this hypothesis,50,123 and
certain flavonoids can influence neuronal dendrite outgrowth in
vitro.124
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Tau hyperphosphorylation and accumulation in neuro-
fibrillary tangles is strongly correlated with cognitive deficits,
and among the kinases that phosphorylate tau, GSK-3β is
strongly implicated in AD pathogenesis. Flavonoids have
proved to have beneficial effects by inhibiting the activity of
certain kinases that contribute to this pathology. It was
demonstrated that indirubins inhibit GSK-3β and CDK5/p25;
both of these protein kinases are involved in abnormal tau
phosphorylation in AD 125 (Figure 4). Moreover, the flavonoid

morin is capable of inhibiting GSK-3β activity and blocking
GSK-3β-induced tau phosphorylation in vitro. Morin also
attenuated Aβ-induced tau phosphorylation and protected
human neuroblastoma cells against Aβ cytotoxicity. Treatment
of 3xTg-AD mice with morin resulted in a decrease in tau
hyperphosphorylation in hippocampal neurons.126 In the
Tg2576 mouse model of AD, luteolin is able to decrease
soluble Aβ levels, reduce GSK-3 activity, and disrupt PS1-APP
association,63 and recently it was demonstrated that cyanidin 3-
O-glucoside (Cy3G) can rescue the cognitive impairments that
are induced by Aβ via the modulation of GSK-3β/tau in rats,
suggesting a potential therapeutic role of Cy3G in AD.127 It
seems reasonable to deduce that imbalances in the phos-
phorylation system are therefore one of the causes for
hyperphosphorylation of cytoskeletal proteins in AD.
Although there has been intense interest in the ability of

flavonoids to modulate kinases, there is no indication that they
may affect signaling pathways via a modulation of phosphatase
activity. Considering that phosphatases reverse the activity of
kinases and since phosphatases are integral to many signaling
pathways, it is conceivable that changes in ERK activation and
related transcription factors may result from flavonoid-induced
modulation of phosphatase activity.82 Nevertheless, future
studies are needed to evaluate the potential of flavonoids to
inhibit, or activate phosphatases and their mechanisms of
action.

■ CONCLUSIONS
Flavonoids are widely available in natural foods, and as a result,
treatments for AD with such natural compounds through diet
or dietary supplements are considered an attractive alternative.
Flavonoids have demonstrated to have beneficial properties
against the general mechanisms of AD in a variety of cell
culture and animal models. Nevertheless, more studies
addressing the specific mechanisms by which flavonoids exert
their potential neuroprotective actions are required, before
novel flavonoid-based dietary applications are applied in
practice to reduce AD risk. Advances in the understanding of
the mechanisms underlying flavonoid−protein interactions in
AD, may represent a promising goal for developing novel
neuroprotective strategies for neurodegenerative diseases.
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